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Abstract: 14 
A key question in biology is why genomic variation persists in a population for extended 15 
periods. Recent studies have identified examples of genomic deletions that have 16 
remained polymorphic in the human lineage for hundreds of millennia, ostensibly owing 17 
to balancing selection. Nevertheless, genome-wide investigation of ancient and possibly 18 
adaptive deletions remains imperative. Here, we demonstrate an excess of 19 
polymorphisms in present-day humans that predate the modern human-Neanderthal 20 
split (ancient polymorphisms), which cannot be explained solely by selectively neutral 21 
scenarios. We analyze the adaptive mechanisms that underlie this excess in deletion 22 
polymorphisms. Using a previously published measure of balancing selection, we show 23 
that this excess of ancient deletions is largely owing to balancing selection. Based on 24 
the absence of signatures of overdominance, we conclude that it is a rare mode of 25 
balancing selection among ancient deletions. Instead, more complex scenarios 26 
involving spatially and temporally variable selective pressures are likely more common 27 
mechanisms. Our results suggest that balancing selection resulted in ancient deletions 28 
harboring disproportionately more exonic variants with GWAS associations. We further 29 
found that ancient deletions are significantly enriched for traits related to metabolism 30 
and immunity. As a by-product of our analysis, we show that deletions are, on average, 31 
more deleterious than single-nucleotide variants. We can now argue that not only is a 32 
vast majority of common variants shared among human populations, but a considerable 33 
portion of biologically relevant variants has been segregating among our ancestors for 34 
hundreds of thousands, if not millions, of years.  35 
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 36 
INTRODUCTION 37 
The evolutionary forces that shape the allele frequency distribution of functional genetic variants 38 
remain a hotly debated issue. In humans, tens of thousands of common variants are reported to 39 
be associated with human diseases (Loos, 2020). However, the mainstream view remains that 40 
the majority of these functional genetic variants have had a negligible effect on reproductive 41 
fitness and that the frequency of these variants has fluctuated neutrally by drift over time 42 
(Bromberg et al., 2013; Dudley et al., 2012). Functional variants that have measurable fitness 43 
effects are often observed at a low frequency (Eyre-Walker, 2010). These low-frequency 44 
functional variants are considered to be in the process of being eliminated from the population 45 
by negative selection (Gibson, 2018; Lettre, 2014; Zeng et al., 2018). Nevertheless, an 46 
increasing number of studies are showing that more complex evolutionary histories (Benton et 47 
al., 2021; Mathieson and Mathieson, 2018) involving introgression from archaic hominins 48 
(McArthur et al., 2020), geography-specific adaptation (Hamid et al., 2021; Lachance and 49 
Tishkoff, 2013; Mendoza-Revilla et al., 2021), negative selection (Zeng et al., 2018), and 50 
polygenic selection (Barghi et al., 2020; Berg and Coop, 2014; Pritchard et al., 2010; Sella and 51 
Barton, 2019) may explain the allele frequencies of variants associated with complex diseases. 52 
In this context, we aim to test the hypothesis that balancing selection is a considerable force in 53 
shaping the allele frequencies of extant functional deletions in the human genome. 54 
 55 
Balancing selection is a mode of natural selection that maintains a genomic polymorphism by 56 
overcoming the stochastic loss or fixation of one of the alleles by genetic drift (Fijarczyk and 57 
Babik, 2015; Fisher, 1922; Noonan et al., 2006). H.J. Muller was the first to discover balancing 58 
selection from his study of balanced lethals in Drosophila (Muller, 1918). Adaptive variational 59 
maintenance by balancing selection may be achieved in a number of ways. In a mechanism 60 
known as over-dominance (also called heterozygote advantage), the individual who is 61 
heterozygous for a certain variant has a higher fitness (Fisher, 1922; Wallace, 1970). In 62 
negative frequency-dependent selection, rarer variants confer higher fitness. This leads to a 63 
fluctuation of a variant’s frequency in the population until an equilibrium is established, such that 64 
neither variant confers an advantage relative to the other (Smith Maynard et al., 1998; 65 
Takahashi and Kawata, 2013). Temporally varying selection, wherein the selection coefficient 66 
associated with an allele changes over time, can lead to the oscillation of this allele’s frequency 67 
over time (Abdul-Rahman et al., 2021; Wittmann et al., 2017). Spatially varying selection, 68 
wherein the selection coefficient associated with an allele varies across geography, may fix this 69 
allele locally in one niche and eliminate it in another, leading to the global persistence of 70 
variation at the locus (Hedrick, 2006; Levene, 1953; Saitou et al., 2021a). 71 
 72 
Unlike positive and negative selection, there is only a modest number of well-established 73 
instances of balancing selection (Charlesworth and Charlesworth 2016). In humans, these 74 
include polymorphisms of the ABO gene, which determine the A, B, and O blood groups 75 
(Ségurel et al. 2012), and polymorphisms in the major histocompatibility complex, which 76 
encodes cell-surface glycoproteins that display samples of peptides from within the cell on the 77 
cell’s surface (Takahata et al. 1992). Two variants of ERAP2, which too is involved in the 78 
antigen-presenting pathway, have also been maintained under balancing selection (Andrés et 79 
al., 2010; Klunk et al., 2022). The classic example of recent, shorter-term balancing selection in 80 
humans is the maintenance (by over-dominance) of sickle-cell alleles at the β-goblin locus in the 81 
regions of Africa where malaria is endemic (Allison, 1954a a, 1954b b; Hedrick, 2011). Similar 82 
reasoning applies to certain �-thalassemia alleles in parts of Southeast Asia where malaria is 83 
widespread (Qiu et al. 2013). In fact, the higher fitness of heterozygotes for thalassemia alleles 84 
in malaria-struck regions was presciently predicted by Haldane in 1949 (Lederberg, 1999). In 85 
the realm of structural variants, complex copy number variation in the human salivary agglutinin 86 
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genes (Alharbi et al., 2022), a regulatory deletion upstream of APOBEC3 gene family 87 
(Gokcumen et al., 2013), and a deletion spanning LCE3B and LCE3C (Pajic et al., 2016), which 88 
is associated with psoriasis, have been explicitly argued to be evolving in the human lineage 89 
under balancing selection. 90 
 91 
So far, most systematic investigations into balancing selection in modern humans have focused 92 
primarily on genes (DeGiorgio et al., 2014; Soni et al., 2022) and on single nucleotide variants 93 
(SNVs) (Siewert and Voight, 2020); (Bitarello et al., 2018; Siewert and Voight, 2017). 94 
Additionally, some studies have focused exclusively on “long-term” balancing selection wherein 95 
variants have been maintained in the human lineage since before the split from the chimpanzee 96 
clade (Leffler et al., 2013). Others have focused on short-term or population-specific balancing 97 
selection (Hedrick, 2011; Qiu et al., 2013). We set out to identify potential targets of balancing 98 
selection that are structural in nature and that may not have been captured by earlier studies. 99 
Thus, we concentrate our efforts on autosomal deletion polymorphisms (> 50bp) that have been 100 
maintained in the human lineage since before the split, approximately ~700,000 years ago, of 101 
anatomically modern humans (AMHs) from the lineage that led to both Neanderthals and 102 
Denisovans (henceforth, collectively referred to as archaic hominins). In this study, we will use 103 
the term “ancient polymorphisms” to refer to such polymorphisms. Focusing on such “medium-104 
term” balancing selection will likely allow us to capture more potential targets than could an 105 
exclusive study of either “long-term” or “short-term” balancing selection. Moreover, deletions are 106 
interesting in the context of selection: since a given deletion affects more nucleotides than a 107 
single nucleotide variant (SNV), if a defined genomic window is indeed of adaptive importance, 108 
deletions may have more profound functional consequences (Conrad et al., 2010; Saitou and 109 
Gokcumen, 2020). Such functional outcomes may translate into non-trivial selection coefficients 110 
either for or against the deletion. Additionally, deletions are relatively easier to both genotype 111 
and analyze than are other structural variants, making an evolutionary analysis involving 112 
deletions tractable. 113 
 114 
RESULTS AND DISCUSSION 115 
AMH exhibits a greater proportion of ancient polymorphisms than expected under 116 
adaptive neutrality  117 
Older polymorphisms may be more likely than newer ones to exhibit signatures associated with 118 
balancing selection because they have survived stochastic fixation or elimination for extended 119 
periods. It is, therefore, possible that a certain proportion of human polymorphisms that are 120 
older than the AMH-archaic split (~700,000 years), i.e., ancient polymorphisms, (Figure 1A) 121 
have been maintained by balancing selection. We tested this hypothesis by comparing the 122 
proportion of ancient polymorphisms segregating in AMHs to a neutrally expected distribution of 123 
this proportion. If this proportion is significantly higher in the observed data than under the 124 
neutrally simulated data, and if we can reject other plausible explanations for difference, we can 125 
conclude that some of the polymorphisms older than 700,000 years may have been maintained 126 
by balancing selection. 127 
 128 
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Figure 1. Excess of ancient polymorphisms segregating in AMHs. A. A schematic representation of derived 131 
“ancient” variants (purple) that emerged before the AMH-archaic hominin divergence (and after hominin-chimp 132 
divergence), and have remained polymorphic in the AMH lineage. The ancestral variants are indicated as orange, 133 
and the derived chimpanzee-specific variants are indicated in light blue. B. The Speidel et al. and Gravel et al. 134 
simulation parameters. Speidel et al. provide parameters that involve varying population sizes for the YRI population. 135 
C. Expected distribution of the proportion of ancient polymorphisms in YRI under different models. Each distribution is 136 
labeled with three parameters in the form (AMH-Ne, Archaic-Ne, time since archaic-AMH divergence). The simulations 137 
where we used variable effective population size published by Spiedel et al. are indicated by blue color and labeled 138 
“Var”. The simulations where AMH-Ne  is constant are shown in orange, and provide the population size used. The 139 
vertical line represents the empirical proportion of ancient polymorphisms in YRI. 140 
 141 
 142 
For this test, we focused on 28,291 randomly chosen SNVs (minor allele count > 1) in the 143 
Yoruba (YRI) population (1000 Genomes Project Consortium et al., 2015); see Supplementary 144 
material for a discussion of our rationale behind using SNVs rather than deletion 145 
polymorphisms, the variant class of our interest). We focused on random SNVs instead of all the 146 
SNVs in order to mitigate the biases that would be introduced due to linkage. A variant was 147 
classified as ancient if the derived allele was shared, by common descent, with at least one of 148 
the four high-coverage archaic hominin genomes (three Neanderthals and one Denisovan) 149 
(Mafessoni et al., 2020; Meyer et al., 2012; Prüfer et al., 2017, 2014). We found that the ancient 150 
SNVs make up 13.7% (3,894 SNVs) of the total. Note that we removed the recurrent SNVs from 151 
our analysis using a linkage-disequilibrium based approach (see Methods). To compare the 152 
proportion of ancient SNVs against neutral expectations, we used ms (Hudson, 2002) to 153 
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produce 2,000 runs of 20,000 neutrally simulated variants in the Yoruba population (see 154 
Methods for details). Thereupon, in each run, we calculated the proportion of variants shared 155 
with archaic hominins, producing a distribution of the expected proportion of ancient 156 
polymorphisms under neutrality. 157 
 158 
To ensure that our analysis is not biased by the idiosyncrasies of any particular model, we 159 
performed these simulations using 36 distinct models. The models vary by three parameters: Ne 160 
of Yoruba/AMH, Ne of archaic hominins, and the time of divergence between the AMH and the 161 
archaic hominin lineage. The Ne for humans can be either constant (ranging from 10,000 to 162 
30,000) or varying over time  (Speidel et al., 2019) (Figure 1B). Ne of archaic hominins ranges 163 
from 1,000 to 3,000; and the divergence time ranges from 500 to 700 kya (Bergström et al., 164 
2021; Mafessoni et al., 2020; Meyer et al., 2012; Prüfer et al., 2014). In the main text, we focus 165 
on the model with variable AMH-Ne (Speidel et al., 2019), using the well-accepted archaic 166 
hominin Ne of 1,000 and a divergence time of 700 kya. We refer to this as the “base model”. 167 
 168 
Using this model, we find that the entire simulated distribution of the proportion of ancient 169 
polymorphisms lies to the left of the empirical value of 13.7% (Figure 1C). These results hold 170 
for all other models with realistic sets of parameters. Even when we change any single 171 
parameter to unrealistic levels (e.g., either AMH-Ne = 30,000, or divergence time = 500 kya), we 172 
still observe an excess of ancient polymorphisms. Neutral models can explain the empirical 173 
proportion of ancient polymorphisms only when at least two parameters are tweaked in a less 174 
realistic direction (e.g., both AMH-Ne = 30,000 and divergence time = 500 kya). Therefore, we 175 
conclude that the high proportion (13.7%) of ancient polymorphisms cannot be explained by 176 
realistic neutral scenarios. 177 
 178 
There is a possibility that we are observing an empirical excess of ancient polymorphisms owing 179 

to a high incidence of recurrent mutations in the AMH and archaic hominin lineages that 180 

remained undetected by the linkage-disequilibrium-based approach we used to identify them. 181 

Since CpG sites may be particularly prone to recurrent mutations, we calculated the proportion 182 

of empirical ancient polymorphisms again using only A⇄T SNVs. This analysis yielded a 183 

proportion of 14.24%, not much different from the previously calculated 13.7%. Moreover, if 184 

recurrence was the main cause of the observed excess of ancient polymorphisms, we would 185 

expect this excess (relative to the simulated distribution) to be more pronounced among 186 

polymorphisms with low derived allele frequencies. To test if this is the case, we repeated our 187 

analysis using the base model for simulations, dividing the empirical and simulated SNVs into 188 

derived allele frequency bins (Figure 1—figure supplement 1). We observed that the excess 189 
of ancient polymorphisms is, in fact, most pronounced at high derived allele frequency. Both 190 
these results combined suggest that our results are not biased due to undetected recurrent 191 
mutations.  192 
 193 
Next, we consider possible non-adaptive explanations for the observed excess of ancient 194 
polymorphisms. First, we considered scenarios invoking structure in the population that was 195 
ancestral to both AMHs and archaic hominins, while allowing gene flow between the latent 196 
subgroups within the ancestral population (Figure 1; see Methods for details). We found that 197 
the excess of ancient polymorphisms can be explained by structuring the ancestral population 198 
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into 3 distinct subpopulations, such that the fraction of each subgroup formed by the migrants of 199 
each of the other subgroups, every generation, is below 0.0075% (Figure 1—figure 200 
supplement 2A-B). However, the allele frequency spectrum for SNVs simulated with ancient 201 
population structure significantly deviates from the observed allele frequency spectrum in that 202 
the former overestimates the intermediate/common variants (Figure 1—figure supplement 203 
2C). Therefore, invoking such structure to explain the excess of ancient polymorphisms may be 204 
unrealistic. Another possible explanation comes from the evidence of introgression from early 205 
modern human ancestors into Neanderthals to the exclusion of Denisovans (Posth et al., 2017). 206 
Such admixture can increase the apparent proportion of ancient polymorphisms due to elevated 207 
allele sharing with Neanderthals. However, we do not observe a higher proportion of derived 208 
allele sharing (by common descent) with Denisovans than with Neanderthals. In fact, the 209 
proportion of derived alleles shared with the Denisovan (9.75%) and the Altai Neanderthal 210 
(10.28%) is higher than the proportion shared with Chagyrskaya and Vindija Neanderthals 211 
(6.14% each), which is incompatible with such introgression as the prime cause of excessive 212 
ancient polymorphisms in AMHs. We note that the differential allele sharing with the Denisovan 213 
and Altai Neanderthal on one hand, and the Vindija and Chagyrskaya Neanderthal on the other 214 
would be an interesting subject for future studies. 215 
 216 
Overall, based on our current knowledge of ancient interactions and demographic history, our 217 
analyses implicate balancing selection as a possible cause of the excess of observed ancient 218 
polymorphisms. Next, we focus on deletion polymorphisms segregating in AMHs, categorize 219 
them based on their evolutionary histories, and test whether ancient deletion polymorphisms are 220 
enriched for targets of balancing selection. 221 
 222 
Categorizing human deletions based on their evolutionary history 223 
Having established that AMHs exhibit an excess of ancient polymorphisms that cannot be 224 
explained solely by non-adaptive causes, we identify ancient deletion polymorphisms among 225 
AMHs. Since the vast majority of deletions in AMHs are derived relative to chimpanzees 226 
(Supplementary material), this could be accomplished by identifying AMH deletions that are 227 
shared with archaic hominins by common descent.  228 
 229 
In this analysis, AMHs are represented by the YRI (Yoruba), CEU (Utah residents with Northern 230 
and Western European ancestry), and CHB (Han Chinese in Beijing) from 1000 Genomes 231 
Project Phase-3 dataset (1000 Genomes Project Consortium et al., 2015); and archaic hominins 232 
are represented by the four available high-coverage (~30X) archaic hominin genomes 233 
(Mafessoni et al., 2020; Meyer et al., 2012; Prüfer et al., 2017, 2014). Our choice of AMH 234 
populations was guided by our wish to both sample from different regions, and use relatively 235 
well-studied populations. We genotyped all AMH deletions in the archaic hominin genomes 236 
using a read depth based pipeline (Supplementary File 1). We considered a deletion “shared” 237 
if it was identified in at least one of the four archaic genomes. For our analysis, we used only the 238 
deletions with an allele count greater than 1 in YRI, CEU, and CHB combined. Additionally, we 239 
retained only 4,863 human deletion polymorphisms that are in linkage-disequilibrium (LD, r2 > 240 
0.9) with at least one SNV (Supplementary File 2). We imposed this LD requirement because 241 
SNVs in LD with the deletion can enable us to distinguish the shared deletions that are 242 
introgressed or recurrent from those that are shared by common descent.  243 
 244 
We found that 575 (11.8%) AMH deletions were shared with archaic hominins, i.e., identified in 245 
at least one archaic hominin genome (Figure 2). We identified 53 instances of independent 246 
emergence (recurrent deletions) in archaic hominin and AMH lineages, wherein no SNV that is 247 
in LD with the deletion in AMHs accompanied the deletion in archaic hominins. In parallel, we 248 
identified 92 deletions that were introgressed from archaic hominins into AMHs: the SNVs in LD 249 
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with these deletions were present in previously identified introgressed haplotypes (Taskent et 250 
al., 2017; Vernot and Akey, 2014). By this process of elimination, we found that 430 (8.8% of 251 
the total) shared deletions are ancient polymorphisms, i.e., they are shared with archaic 252 
hominins by common descent and thus emerged at least ~700,000 years ago.  253 

 254 
Figure 2 -  Deletions in AMHs that are shared with archaic hominins. The top panel shows the categorization of 255 
deletion polymorphisms as AMH-specific, recurrent (green), introgressed (orange), or ancient (purple). The 256 
evolutionary histories of shared deletions are summarized schematically in the bottom panel.  257 
 258 
To confirm that our pipeline for identifying ancient deletions (Figure 2—figure supplement 1) 259 
has high accuracy, we estimated the ages of deletions, based on the ages of SNVs in LD. We 260 
used two methods in parallel: 1) Human Genome Dating (Albers and McVean, 2020); and 2) 261 
Relate (Speidel et al., 2019) (see Methods). If both our genotyping pipeline and categorization 262 
of shared deletions (as recurrent, introgressed, or ancient) are sound, we should expect that 263 
Age(human-specific) ൎ Age(recurrent) < Age(introgressed) < Age(Ancient). Both methods 264 
yielded the expected pattern of ages across the categories of deletions (Figure 3, Figure 3—265 
figure supplement 1). We found that the median age for ancient deletions, using Relate, is ~1 266 
million years. About 15% (63) of these deletions are older than 2 million years. In contrast, the 267 
median age of non-ancient deletions is ~239,000 years. As such, we infer that both our 268 
genotyping pipeline and deletion categorization approach are sound. Counterintuitively, a small 269 
number of “ancient” deletions have very recent dates. This may be due to instances of recent 270 
soft sweeps involving some deletions leading to an increased length of the associated haplotype 271 
and an artificial decrease in age. Secondly, some ancient deletions may have low frequencies, 272 
which too, creates a downward bias in age. Lastly, this may be due to miscategorization of non-273 
ancient deletions as ancient.  Next, we test if ancient deletions are enriched for targets of 274 
balancing selection relative to non-ancient deletions. 275 
 276 
 277 
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 278 
Figure 3. Age estimates of the haplotypes harboring polymorphic deletions. The x-axis shows the age 279 
estimates, obtained using Relate, for the deletions. For orienting the reader regarding the age of these variants, we 280 
provide below a schematic phylogeny representing recent human evolution. 281 
 282 
Ancient deletion polymorphisms are more likely to be targets of balancing selection than 283 
are non-ancient ones 284 
We used the std�2-statistic (Siewert and Voight, 2020) to test the hypothesis that ancient 285 
deletion polymorphisms are more likely than are non-ancient deletions to be targets of balancing 286 
selection. Std�2 is a measure of balancing selection, that calculates the weighted average of 287 
the number of flanking derived variants, where weights are the similarity in frequency between 288 
the core allele and the flanking variants (Siewert and Voight, 2017).  289 
 290 
For a conceptual understanding of Std�2 (Figure 4A), suppose a deletion emerges and the 291 
resulting polymorphism is subject to balancing selection; the deletion will rise in frequency until it 292 
reaches a certain equilibrium frequency. New SNVs will emerge on the haplotypes carrying the 293 
deletion. Some of these SNVs will drift upward in frequency, but since these SNVs will be linked 294 
to the deletion, they too can only rise to the equilibrium frequency of the balanced deletion 295 
(Siewert and Voight, 2020, 2017). We refer to this type of drift as Goldilocks drift, since the 296 
linked SNVs drift upward to the “just-right” equilibrium frequency of the balanced deletion. 297 
Goldilocks drift thus leads to allelic class build-up (analogous to how hitchhiking leads to 298 
sweeps), which refers to a situation involving the fixation of many flanking variants within the set 299 
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of haplotypes carrying the deletion. Std�2 value for a core variant may be thought of as the 300 
average intensity of Goldilocks drift experienced by SNVs around it. Therefore, a high std�2 301 
value for a variant implies that it is either a target of balancing selection or close to a target of 302 
balancing selection.  303 
 304 
We observed that std�2 estimates for ancient deletions are significantly larger than those for 305 
non-ancient deletions across YRI, CEU, and CHB populations (p < 10-7, Wilcoxon) (Figure 4B). 306 
These results provide empirical evidence that ancient deletion polymorphisms are enriched for 307 
targets of balancing selection. Our results are consistent with other recent studies (Soni et al., 308 
2022) that have argued that the role of balancing selection in explaining the maintenance of 309 
common variation in the human lineage is underappreciated. 310 
 311 

 312 
Figure 4.  An empirical assessment of putative balancing selection among ancient deletions. A) The 313 
conceptual framework in which std�2 statistic works. The last step demonstrates “Goldilocks” drift (the process that 314 
results in allelic class build-up).  B) A box plot for std�2 for AMH-specific, versus ancient deletions (frequency > 5% 315 
in respective populations). Higher std�2 values for older deletions represented in purple empirically show that older 316 
deletions are significantly enriched for targets of balancing selection. All comparisons are significant, p < 10-7 317 
(Wilcoxon). 318 
 319 
Previous genome-wide balancing selection scans focused on either individual genes or single 320 
nucleotide variants (SNVs). Consequently, we do not expect to find many ancient deletions that 321 
have previously been reported as targets of balancing selection. Nevertheless, we investigated 322 
whether the exons in any of the genes that have been reported as targets of balancing selection 323 
in DeGiorgio et al. (2014) or Soni et al. (2022) overlap with ancient deletions. We found no 324 
overlaps. We also found that 77 common (> 5% in YRI, CEU, and CHB combined) ancient 325 
deletions were in LD (r2 > 0.9) with SNVs that had high (in the 95th percentile) Std�2 (Siewert 326 
and Voight, 2020) values in YRI, CEU, and CHB. This is unsurprising since this is the measure 327 
we used to show that ancient deletion polymorphisms are enriched for balancing selection 328 
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targets. Interestingly, one of the ancient deletions with a high associated Std�2 value overlaps 329 
a candidate region for balancing selection previously identified using the non-central deviation 330 
(NCD) method (Bitarello et al., 2018). This 433 bp deletion (esv3607090), which is 2 million 331 
years old and common across populations, deletes part of an intron of the STK32A gene. This 332 
could be an interesting subject for future studies. Regardless, a vast majority of common 333 
ancient deletions (73%) were not reported previously as balancing selection candidates and 334 
thus are novel targets for future studies. 335 
 336 
 337 
Phenotypic relevance of ancient deletion polymorphisms 338 
Selection can only act on a region of the genome by means of the phenotypic function it 339 
confers. It follows then that any adaptively maintained ancient polymorphisms must be 340 
functional. If an appreciable proportion of ancient deletion polymorphisms have evolved under 341 
balancing selection and more recent deletion polymorphisms have not, we should expect 342 
ancient deletions to be enriched for functional effects. To avoid biases introduced by different 343 
proportions of rare variants among ancient versus non-ancient deletions, we focus only on 344 
deletion with frequency > 5% in AMHs. For both ancient and non-ancient deletions, we 345 
investigated 1) whether a deletion intersects exons and 2) whether any of the SNVs in LD with it 346 
are associated with UK BioBank GWAS traits with p < 10-8 (http://www.nealelab.is/uk-biobank/; 347 
Figure 5A; see Methods). We did not observe a significant increase in either the proportion of 348 
exonic (ancient=5.6%; non-ancient=3.6%) or GWAS-associated (ancient=19.1%; non-349 
ancient=16.4%) ancient deletion, relative to non-ancient deletions (Figure 5B). However, when 350 
we classify a deletion as functional more conservatively, i.e., it both intersects an exon and has 351 
a GWAS association (i.e., one of the SNVs in LD with it has a GWAS association), we observe 352 
a 4.2-fold enrichment (p=0.003) of functional variants among ancient deletions (Figure 5B). In 353 
fact, out of the 18 common deletions (frequency > 5%) that both intersect genes and have 354 
GWAS associations, 9 (50%) are ancient. Further, we observed a phenotypic enrichment 355 
among ancient deletions for some GWAS trait categories: a 12.5-fold enrichment (p=10-5) of 356 
traits related to inflammatory response and a 2.8-fold enrichment (p=0.003) of traits related to 357 
metabolism (Figure 5C).  358 
 359 

 360 
Figure 5. Functional enrichment among ancient deletions. A. Functional categorization of common deletions. 361 
Within each category, the proportions of deletions falling under different evolutionary categories are shown in pie-362 
charts. B. Permutation-based analysis of enrichment of functionality among ancient deletions, relative to non-ancient 363 
deletions. The black horizontal line indicates the expected ratio of 1.0. For each definition of functionality, the number 364 
of functional ancient deletions, and the p-value associated with the enrichment are provided. C. Permutation-based 365 
enrichment analysis for different phenotypic categories (based on GWAS) among ancient deletions, relative to non-366 
ancient deletions. The black horizontal line indicates the expected ratio of 1.0. Dark orange indicates a statistically 367 
significant deviation from the expected ratio of 1.0. Light orange means no significant deviation from the expected 368 
ratio of 1.0.  369 
 370 
A focused literature review and analysis of functional effects associated with some of the 371 
ancient deletions revealed multiple mechanisms through which they affect function (Figure 6A). 372 
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Firstly, whole gene deletions may affect the function of entire environment-interacting gene 373 
families. We found two ancient whole gene deletions: esv3587563 (deleting LCE3B and 374 
LCE3C) and esv3600896 (deleting UGT2B28). The members of the LCE3 and UGT2B gene 375 
families mediate immune response and steroid metabolism, respectively; genes from both 376 
families likely evolved under adaptive forces (de Guzman Strong et al., 2010; Pajic et al., 2016; 377 
Starr et al., 2021; Xue et al., 2008). The functional consequence of whole gene deletions is, of 378 
course, loss of function of the deleted genes. In addition, esv3587563 is associated with an 379 
increase in the expression of LCE3A (de Guzman Strong et al., 2010; Pajic et al., 2016), while 380 
esv3600896 is associated with an increase in the expression of UGT2B11. Thus, we propose 381 
that whole-gene deletions of members of environment-interacting gene families may lead to the 382 
functional “fine-tuning” of the entire gene family.  383 
 384 
Secondly, we revealed dozens of potentially adaptive ancient deletions that both mediate gene 385 
regulation and are associated with human traits. For example, we found multiple ancient 386 
deletions that are proximal to the HLA locus, associated with immune-related phenotypes, and 387 
affect the expression levels of nearby genes. One such example, the deletion esv3608584, is 388 
noteworthy within the context of balancing selection because it affects the expression of 389 
different HLA genes in opposite directions (Figure 6B). As such, this deletion may lead to 390 
increased susceptibility to some pathogens while increasing the defenses against others. 391 
Further, we observed that the ancient deletions in the HLA locus also lead to the expression of 392 
different isoforms of HLA genes. Using the GTeX database, we found at least four other 393 
instances where ancient deletions lead to the expression of different isoforms, including 394 
deletions affecting the HLA-DRB1-6, HLA-DOB, SIRPB1, GHR, and CYP3A43 genes. We 395 
recently showed that the ancient deletion of the third exon of the growth hormone receptor gene 396 
leads to the expression of a smaller version of growth hormone, which may be adaptive in times 397 
of starvation (Saitou et al., 2021b). The SIRPB1 gene encodes a glycosylated transmembrane 398 
receptor protein (Kharitonenkov et al., 1997), and its different isoforms may lead to the 399 
recognition of different pathogens. Similarly, CYP3A43, a member of the cytochrome p450 gene 400 
family, is involved in metabolizing external substances, and genetically determined isoforms 401 
contribute to its functional variation in humans (Agarwal et al., 2008). Thus, ancient deletions 402 
that lead to specific isoform expression may have been adaptively evolving to adjust the 403 
function of environment-interacting genes across both geography and time. It is important to 404 
acknowledge that these non-exonic deletions may not be the causal variant in the associated 405 
haplotypes. Nevertheless, the full extent of deletion polymorphisms shaping the expression 406 
levels and sculpting the isoform diversity at the genetic level remains a fascinating area of future 407 
research. 408 
 409 
 410 
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 411 
Figure 6. A. The significance levels (-log(p-value)) of phenotypic associations of deletions with GWAS traits as a 412 
function of their emergence time. Gray points indicate non-ancient deletions. Purple and orange points indicate non-413 
exonic ancient deletions with GWAS hits  and exonic ancient deletions with GWAS hits, respectively. The genes 414 
whose exons are covered by ancient deletions, and the traits associated with ancient deletions are mentioned in the 415 
plot. B. The significance levels (-log(p-value)) and sizes of expression level changes of nearby HLA genes associated 416 
with the presence of the deletion esv3608584. Each color refers to a different HLA gene. Each point in a given color 417 
represents a different tissue. Only those tissues whose expression level changes are statistically significant are 418 
shown here. 419 
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 420 
 421 
The effect of negative selection is stronger on deletions than SNVs 422 
Based on previous work, we expect that deletions are more likely than SNVs to be under 423 
negative selection (Conrad et al., 2006; Kondrashov, 2017; Lin et al., 2015; Lin and Gokcumen, 424 
2019). To investigate the magnitude of this effect, we compared the proportion of SNVs and 425 
deletion polymorphisms that are ancient. Applying the same bioinformatic pipeline to identify 426 
ancient polymorphisms in both cases, we found that 13.7% of SNVs and 9.6% of deletion 427 
polymorphisms are ancient in YRI. This result alone suggests that deletion polymorphisms are 428 
more likely than SNVs to be eliminated by negative selection, a trend that we expect to be more 429 
pronounced with increasing ages of polymorphisms. The greater intensity of negative selection 430 
acting on deletions implies that deletions are, in general, more deleterious than SNVs. It follows 431 
that younger (non-ancient) deletions currently segregating in human populations, which 432 
negative selection has not yet purged, are more likely to be deleterious (and perhaps disease-433 
causing) than SNVs (Kondroshov, 2017).  434 
 435 
The preceding argument makes intuitive sense since a given deletion spans more bases than 436 
does a SNV. If this intuition is correct, we expect that larger deletions should, on average, 437 
experience more intense negative selection. Since most large ancient deletions would have 438 
been purged by negative selection, we expect surviving ancient deletions to be, on average, 439 
smaller than non-ancient deletions. We test this using common deletions (frequency > 5% in 440 
YRI, CEU, and CHB combined). Ancient deletions are indeed 14% shorter than non-ancient 441 
deletions (p=0.02; permutation test). Nevertheless, there is an excess of long deletions among 442 
ancient deletions relative to non-ancient deletions (Figure 7A). In particular, the 95th and 98th 443 
size percentiles of ancient deletions are 33% (p=0.04; permutation test) and 128% (p=0.005; 444 
permutation test) larger than non-ancient deletions, respectively (see Methods). This excess of 445 
longer deletions is inconsistent with evolution under neutrality or negative selection. Therefore, 446 
the longest 5% of ancient deletions are excellent targets for future studies of balancing 447 
selection. In fact, 3 out of the 9 GWAS-associated common exonic deletions intersecting 448 
SIRPB1, LCE3A, LCE3B, and UGT2B28 are in the 95th percentile of the size distribution of 449 
ancient deletions. 450 
 451 
Strong overdominance is rare among ancient deletion polymorphisms 452 
Having established that ancient deletion polymorphisms appear enriched for targets of 453 
balancing selection, we wanted to investigate whether classical overdominance is a common 454 
mechanism underlying this observation. To accomplish this, we first identified the genomic 455 
signatures that we expect to see in a region where a polymorphism has evolved under 456 
overdominance, and then we look for these signatures among ancient deletions. To identify the 457 
signatures of overdominance, we simulated sequence evolution under neutrality and 458 
overdominance (using a variety of selection coeffiecients), in turn, for variants that emerged one 459 
million years ago. We asked whether we can distinguish between neutrality and overdominance 460 
by calculating several population genetic statistics, including Tajima’s D, �, �, etc., on 461 
sequences generated from the neutral and overdominance simulations (see Methods for full 462 
list) . We found that none of these statistics alone can distinguish overdominance from 463 
neutrality, even for strong selection coefficients (Figure 7—figure supplement 1)  464 
 465 
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 466 
Figure 7. A. The ratios of sizes of ancient deletions to those of non-ancient deletions at different size percentiles. The 467 
black horizontal line refers to the expected ratio of 1.0. Dark orange bars refer to a statistically significant 468 
(permuatation test) deviation from the expected ratio. Light orange bars mean that the deviation from the extend ratio 469 
of 1.0 is not statistically significant. B. The estimated measure of allele frequency change (�2) between 50,000 and 470 
5,000 years before present in common ancient versus common non-ancient deletions. Ancient deletions have 471 
significantly (p=2x10-7, Wilcoxon) higher frequency variability over the last 50,000 years. 472 
 473 
Instead, we found that a distinct feature of overdominance is that the allele frequency rapidly 474 
increases (similar to a selective sweep) until it reaches an equilibrium frequency, whereafter it 475 
remains remarkably stable across time (Figure 7—figure supplement 1). In contrast, under 476 
neutrality, a random change in allele frequency in every generation produced elevated noise 477 
across time in allele frequency trajectories. To ascertain if overdominance is a common 478 
mechanism of evolution for ancient deletions, we inferred the allele frequency trajectories of 479 
ancient deletions using Relate (Speidel et al., 2019) and quantified the variation in allele 480 
frequency between 5,000 and 50,000 years ago by squaring the standardized allele frequency 481 
difference (�2) (Methods). We already know that ancient deletions are enriched for targets of 482 
balancing selection. If large proportion of these balancing selection targets have evolved under 483 
overdominance, we expect ancient deletions to have more stable allele frequencies across time, 484 
relative to non-ancient deletions, leading to smaller �2 values on average. However, we do not 485 
observe this trend among common (frequency > 5% in YRI, CEU, and CHB combined) deletions 486 
(Figure 7B). Consequently, at least with our current resolution of allele frequency trajectory 487 
estimation, we found no evidence for overdominance being the prime mode of balancing 488 
selection operating on ancient polymorphisms in AMHs.  489 
 490 
In fact, we observe that ancient deletion polymorphisms exhibit greater allele frequency 491 
variation than do non-ancient deletions (Figure 7B; p=2x10-7, Wilcoxon). This suggests that a 492 
large proportion of the instances of medium-term balancing selection likely involve temporally 493 
and spatially variable selection, which lead to elevated levels of allele-frequency variation over 494 
time. This is consistent with our locus-specific analyses of ancient deletion polymorphisms. For 495 
example, we recently reported that the deletion (esv3604875) of the third exon of the human 496 
growth hormone receptor gene (GHR) has evolved under temporally and geographically 497 
variable adaptive constraints (Saitou et al., 2021b). In fact, this deletion is in the 93rd percentile 498 
of �2 values. Ancient deletions like these are common and old, and also exhibit high population 499 
differentiation. Collectively, we argue that such adaptive maintenance of ancient, functional 500 
alleles may be due to varying selection trends across geographies and time. 501 
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 502 
 503 
CONCLUSION 504 
This manuscript asked whether adaptive forces have maintained ancient deletion 505 
polymorphisms in humans. We provide evidence supporting the idea that AMHs exhibit an 506 
excess of ancient polymorphisms, relative to the neutral expectation. Using simulations and 507 
empirical data, we provide evidence for the notion that balancing selection is likely a 508 
considerable force shaping the extant functional deletion polymorphisms. We show that when 509 
functionality is defined conservatively, ancient deletions are disproportionately functional, 510 
compared to non-ancient deletions. In fact, 50% of such functionally relevant deletions are 511 
ancient. Additionally, ancient deletions are enriched for association related to metabolism and 512 
inflammatory response. Our results suggest that classical overdominance may not be the prime 513 
mode of balancing selection affecting the evolution of ancient deletions. Instead, geographically 514 
and temporally variable, as well as frequency-dependent selection may underlie the 515 
maintenance of ancient functional deletions. We also provide insights about the mechanisms by 516 
which a deletion could confer function: in addition to previously defined functional effects of 517 
deletions such as the loss of a gene’s function and regulation of expression levels, we highlight 518 
multiple instances where the presence of ancient deletions lead to the expression of different 519 
isoforms. Overall, our study contributes to the growing body of evidence supporting the notion 520 
that balancing selection may be an important force in the evolution of genomic variation shared 521 
among human populations. These ancient variants are an important part of our legacy as a 522 
species: something we all share. 523 
 524 
 525 
 526 
  527 
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METHODS 561 
 562 
Proportion of ancient polymorphisms in neutral simulations versus observation: 563 
We compared the proportion of ancient polymorphisms in randomly chosen YRI SNVs against 564 
the expected distribution of this proportion under neutrality. We obtained SNVs from the 1000G 565 
phase-3 vcf files (1000 Genomes Project Consortium et al., 2015) for the analysis described 566 
above. Using a script written in AWK (Aho et al., 1978), we subsetted the vcf files to retain only 567 
those biallelic SNVs that contained information about the ancestral/derived status of the two 568 
alleles. We used the --keep option in vcftools (Danecek et al., 2011) to retain individuals only 569 
from the Yoruba population. We then used the --mac option to retain only those SNVs for which 570 
the minor allele count was greater than 1. The allele-count filter was used to exclude singletons 571 
which could create spurious results for the linkage disequilibrium analysis described below. On 572 
the resulting vcf files, we used the SelectVariants tool with the --select-random-fraction option in 573 
GATK (Van der Auwera and O’Connor, 2020) to randomly retain 0.25% of the variants. This 574 
resulted in a set of 38,231 SNVs. Next, we investigated whether the random SNVs are in 575 
linkage disequilibrium with any other SNVs in their vicinity. In particular, we used the --hap-r2-576 
positions and --min-r2 option in vcftools, along with the ancestral/derived status of alleles, to 577 
retain only those random SNVs wherein the derived allele was in linkage disequilibrium (r2 > 578 
0.9) with the derived allele of another SNV within a 50 kb radius of the random SNV. This 579 
resulted in 28,491 SNVs. We only retained the random SNVs with variants in LD in their vicinity 580 
to rule out cases of recurrence of the SNV between AMHs and archaic hominins, as described 581 
below. There seems to be one bias that may be introduced by eliminating polymorphisms with 582 
no SNVs in LD in AMHs: this would bias our analysis to regions with low recombination rates. In 583 
these regions, we would expect higher background selection due to the Hill-Robertson effect, 584 
leading to a deflation in the proportion of ancient polymorphisms. Since we observe a larger 585 
than expected proportion of ancient polymorphisms despite this bias, we can conclude that this 586 
bias only makes our analysis more conservative. 587 
 588 
We then inspected the 28,491 random SNVs to see whether the derived alleles are shared with 589 
any of the four high coverage archaic genomes (Altai Neanderthal, Vindija Neanderthal, 590 
Chagyrskaya Neanderthal, and the Denisovan). We found that 4,616 SNVs (16.2%) had their 591 
derived allele shared (either homo- or heterozygously) with at least one of the four archaic 592 
hominins. Since we are only interested in polymorphisms older than 700,000 years, we want to 593 
focus only on SNVs where the derived allele is shared with archaic hominins by common 594 
descent. We thus excluded the SNVs where the derived allele emerged independently 595 
(recurrence) in AMHs and archaic hominins in the following way. For each of the 4,616 core 596 
SNVs with shared derived alleles in archaic hominins, we tested whether any of the derived 597 
alleles in LD with the core derived allele is also present in any of the same archaic hominins 598 
which carry the derived allele for the core SNV itself. If any of the archaic hominins contain both 599 
the derived allele of the core SNV along with at least one derived allele in LD with the derived 600 
allele of the core SNV, we classify that core SNV as “shared by common descent.” If any core 601 
SNV has a derived allele shared with archaic hominins but not a derived allele in LD with the 602 
core SNV, we classify the core SNV as “recurrent.” This approach yielded 3,894 SNVs (13.7%) 603 
wherein the derived allele is shared with at least one of the archaic hominins by common 604 
descent.  605 
 606 
In order to investigate whether this percentage (13.7%) of ancient polymorphisms (700,000 607 
years old polymorphisms) is significantly higher than the neutral expectation, we wanted to 608 
calculate the same percentage for a set of neutrally simulated SNVs. We used the program ms 609 
(Hudson, 2002) to neutrally simulate a set of 20,000 (independent, and therefore freely 610 
recombining) variants 2,000 times using various models. All of these models included 216 611 
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haploid genomes representing YRI (matching the YRI sample size in 1000G dataset) and 2 612 
haploid genomes representing each of the four archaic hominins. For every model, and for each 613 
of the 2,000 runs we calculated the proportion of SNVs present in the YRI with minor allele-614 
count > 1 that were shared with at least one of the archaic hominins. Thereby, we obtained a 615 
distribution of the proportion of ancient polymorphisms under each of the models.  616 
 617 
We used a total of 36 models. The models varied by three parameters: Ne of Yoruba/AMH, Ne of 618 
archaic hominins, and the time of divergence between the AMH and archaic hominin lineages. 619 
For 27 of these models, Ne for humans was constant across time (ranging from 10,000 to 620 
30,000 across models); for 9, it varied over time (Speidel et al., 2019) (Figure 1B). The Ne of 621 
the archaic hominin lineage was constant over time in each model ranged from 1,000 to 3,000 622 
across models; and the time of divergence between AMH and archaic hominins ranges from 623 
500 to 700 kya across models (Bergström et al., 2021; Mafessoni et al., 2020; Meyer et al., 624 
2012; Prüfer et al., 2014). In the main text, we focused on the model with variable AMH-Ne 625 
(Speidel et al., 2019), using the well-accepted archaic hominin Ne of 1,000 and a divergence 626 
time of 700 kya; we referred to this as the “base model”. For each model, we assumed that 627 
Denisovans diverged from Neanderthals ~400,000 years ago, the Altai Neanderthal lineage 628 
separated from the Vindija-Chagyrskaya lineage ~130,000 years ago, and the Vindija lineage 629 
separated from the Chagyrskaya lineage ~90,000 years ago (Bergström et al., 2021; Gravel et 630 
al., 2011; Mafessoni et al., 2020; Meyer et al., 2012; Prüfer et al., 2014). Moreover, the 631 
generation time was assumed to be 29 years (Fenner, 2005; Langergraber et al., 2012; Li and 632 
Durbin, 2011). 633 
 634 
To test if the empirical excess of ancient polymorphisms is more pronounced among low 635 
derived allele frequency variants (due to recurrence), we repeated our analysis using the base 636 
model (variable AMH Ne, Archaic Ne = 1,000, divergence time = 700 kya) for simulations, 637 
dividing the empirical and simulated SNVs into derived allele frequency bins. To ensure there 638 
are enough variants in each frequency bin, we used a larger set of randomly chosen YRI SNVs. 639 
In particular, we used 300,000 SNVs that have a minor allele count > 1 and at least one variant 640 
in LD (r2 > 0.9) with them. Using the same method as described above, we identified the SNVs 641 
that are shared with archaic hominins by common descent. We used the base model to simulate 642 
1500 runs of 400,000 SNVs. Thereupon, we divided the empirical and simulated SNVs into 10 643 
derived allele frequency bins of uniform length, and compared the simulated distribution of the 644 
proportion of ancient polymorphisms with the observed proportion in each bin (Figure 1—figure 645 
supplement 1). Moreover, to gauge whether recurrence at CpG sites leads to the excess of 646 

ancient polymorphisms, we subsetted the 300,000 SNVs to retain only the 21,402 A⇄T SNVs, 647 

and calculated the proportion of ancient polymorphisms therein.     648 
 649 
Additionally, we also performed another set of neutral simulations, this time with structure 650 
introduced in the population ancestral to the archaic hominins and AMHs. This too was done 651 
using Hudson’s ms. This was done using a constant size model with YRI/AMH Ne = 14,474 652 
(Gravel et al., 2011), Archaic Ne = 1,000, and divergence time = 700 kya. The effective 653 
population size for each of the subgroups in the population ancestral to both AMHs and archaic 654 
hominins was set to 10,000. We define mi,j  as the fraction of subgroup i that is formed by the 655 
migrants of subgroup j in each generation, where i ≠ j and i,j ∈ {1,2,3}. For all i and j, where i ≠ j, 656 
we set mi,j = m. The program ms takes this parameter in the form of M = 4Nm (where N = 657 
10,000 is the effective population size of each subgroup). We performed simulations for 10,000 658 
different values of M chosen uniformly on the log scale from the range (0.01,100).  This is akin 659 
to running simulations using 10,000 different values of m in the range (0.25 x 10-7, 0.25 x 10-2). 660 
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For each m, 1000 variants were simulated. Thus, for each m, we calculated the percentage of 661 
variants in Yoruba (with allele-count >1) wherein the derived allele was shared with the archaic 662 
hominins. The proportion of allele-sharing in simulations equaled or exceeded the proportion 663 
(13.7%) observed in real-life at approximately m ≤ 0.0075%.  664 
 665 
Identifying deletions in archaic genomes 666 
The identification of deletions in archaic hominins was predicated on the concept that a deletion 667 
in an archaic hominin would correspond to a low read depth in the window of deletion in the 668 
hominin’s genome. We started with two main types of input files: 1) The VCF file for the 1000 669 
Genomes Phase 3 dataset; and 2) A BAM file for each high-coverage archaic hominin.  670 
 671 
The 1000G phase-3 VCF file was obtained from https://www.internationalgenome.org/data. This 672 
includes 84.4 million variants from 2504 individuals across 26 populations.. The file was then 673 
converted to a BED file (with three tab-separated columns representing chromosome numbers, 674 
start positions, and end positions of deletions) using a script written in AWK. This VCF file was 675 
filtered to retain only biallelic autosomal deletions. This amounted to 32,154 deletions. We 676 
genotyped all these deletions in the four high-coverage archaic hominin genomes. (Note that in 677 
the main text, we focused only on 4,863 deletions with both allele-count > 1 in YRI, CEU, and 678 
CHB combined, and at least one SNV in LD.)  679 
 680 
The sequence files for archaic genomes mapped to hg19 were obtained from 681 
https://www.eva.mpg.de/genetics/genome-projects.html?Fsize=0%2C%252%27A%3D0. These 682 
BAM files containing mapping information (such as the start and end coordinates of the part of 683 
the genome to which a read maps) were converted to  BED files. This was done using the 684 
bamToBed command in the bedtools  module (Quinlan and Hall, 2010). We then used the two 685 
types of BED files to count the number of reads for each archaic genome that mapped to a 686 
region of the genome that is polymorphically deleted in AMHs. In order to achieve this, we used 687 
the intersectBed command with the  -c option within the  bedtools module. This command 688 
counts the number of reads in an archaic genome that intersects with the region of the genome 689 
harboring a deletion polymorphism in AMHs.  690 
 691 
Next, for every archaic genome, we normalized the number of reads at each window of deletion 692 
by the size of the window. 693 
 694 

Normalized Read Depth = # ௢௙ ௥௘௔ௗ௦ ௜௡௧௘௥௦௘௖௧௜௡௚ ௧௛௘ ௪௜௡ௗ௢௪ ௢௙ ௗ௘௟௘௧௜௢௡ௌ௜௭௘ ௢௙ ௧௛௘ ௪௜௡ௗ௢௪ ௢௙ ௗ௘௟௘௧௜௢௡  695 

 696 
For each archaic genome, we wanted to calculate the Z-scores of the normalized read depths 697 
across all windows of deletion, and classify a window as a deletion if the normalized read depth 698 
was below a certain threshold. To prevent outliers from affecting measures of central tendency 699 
and spread, and therefore the Z-score threshold, we use the modified Z-score to classify a 700 
region as deleted or non-deleted in an archaic genome. The modified Z-score uses median (as 701 
opposed to mean) and median absolute deviation (as opposed to standard deviation) to 702 
calculate the Z-score.  For a given archaic genome, the modified Z-score of the normalized read 703 
depth at the ith window of deletion is given by:  704 
 705 

ModZi = 
௥೔ ି ெ௘ௗ௜௔௡(ோ)ெ௘ௗ௜௔௡஺௕௦௢௟௨௧௘஽௘௩௜௔௧௜௢௡(ோ) 706 

 707 
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where ri denotes the normalized read depth at a given window of deletion, and R denotes the 708 
random variable representing normalized read depth. 709 
 710 
(Iglewicz and Hoaglin, 1993) have suggested that a threshold ±3.5 is reasonable for outlier 711 
detection using modified z-scores. Nevertheless, for our purposes, we used a more 712 
conservative threshold of -5, which we deemed more-appropriate based on spot-checking. For 713 
example, if the modified Z-score (of the normalized read-depth) at a window of deletion was less 714 
than -5 in the Vindija Neanderthal, that window was classified as deleted in the Vindija 715 
Neanderthal. The distributions of these modified Z-scores across windows of deletions for the 716 
four high-coverage archaic genomes are illustrated in figure 2—figure supplement 1. All 717 
calculations downstream of obtaining the raw numbers of reads from archaic genomes 718 
intersecting with the windows of deletion, were performed using a script that we wrote in R. The 719 
read-depth analysis was done using all 32,154 AHM deletions (results for the status of these 720 
deletions in the four high-coverage archaic genomes are available in Supplementary File 1). 721 
 722 
 723 
Identifying SNVs that are in linkage disequilibrium with deletion polymorphisms in 724 
AMHs: 725 
We subsetted the 1000G phase-3 VCF files (there is a separate file for each chromosome) 726 
obtained from https://www.internationalgenome.org/data to retain individuals only from CEU 727 
(n=103), CHB (n=99), and YRI (n=108) populations. This filter was applied using the --keep  728 
option in the module VCFtools (Danecek et al., 2011). All variants that had a minor allele count 729 
of less than 2 were eliminated using the --mac filter in VCFtools. We used the resulting VCF 730 
files to identify SNVs in LD with each of the autosomal biallelic deletions (with minor allele-count 731 
> 1 in YRI, CEU, and CHB combined) within a 50 kb radius of the deletion. We did this using the 732 
--hap-r2-positions and --min-r2 0.9 flags in VCFtools. For each autosomal biallelic deletion 733 
with allele-count > 1, this gave us a list of SNVs in LD with the deletion with r2 > 0.9, if such 734 
SNVs existed. At least one such SNV in LD existed for 4,863 deletions. We called this set of 735 
deletion the “deletion dataset” and based all our downstream analysis on it. 736 
 737 
It is important to describe why we only focused on deletions with identifiable variants (most of 738 
them SNVs) in LD with them. We can only eliminate potentially introgressed deletions by 739 
checking whether at least one of the SNVs in LD with a deletion is already known to be 740 
introgressed. Moreover, we can confirm whether a deletion shared between archaic hominins 741 
and AMHs is identical by descent (thereby eliminating recurrence) by checking whether the 742 
same SNVs accompany the deletion in AMHs and archaic hominins. This filtering would not be 743 
possible if our deletions were not flanked by variants in LD with them. A shortcoming of this 744 
approach is that it fails to capture balanced deletions that are not in LD with at least one SNV. 745 
 746 
Eliminating instances of recurrence and introgression 747 
We found that 575 human polymorphic deletions are also present in at least one archaic 748 
hominin genome. In order to ensure that we do further analysis only on deletions that are 749 
shared with archaic hominins by common descent, we wanted to eliminate shared deletions that 750 
were recurrent or introgressed. 751 
 752 
We removed recurrent deletions (those emerging in AMHs and archaic hominins independently) 753 
by retaining only those shared deletions for which at least one allele in LD with the deletion in 754 
AMHs was also present in at least one archaic genome that harbored the deletion. To do this, 755 
we needed to know whether variants in LD with deletions are present or absent in the archaic 756 
genomes. We started with two types of inputs: 1) VCF files for each of the archaic genomes 757 
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(mapped to hg19) and 2) a file containing all the variants (SNVs) in LD with polymorphic 758 
deletions in AMHs. We filtered the VCF files to include only the SNVs in LD with shared 759 
deletions. This was done using the --positions flag in VCFtools. The presence or absence of 760 
every variant in LD was then determined using the vcf files for the archaic hominins. The 761 
procedure was implemented using an AWK script. 53 shared deletions were classified as 762 
“recurrent” using this approach. 763 
 764 
In order to eliminate introgressed shared deletions, we used the results published by (Taskent 765 
et al., 2020). In their study, the authors had identified introgressed haplotypes in Eurasians 766 
using the S* statistic. They had also published a list of S*-significant SNVs that characterize 767 
introgressed haplotypes. We stamped out the shared deletions that were both absent in Yoruba 768 
and for which at least one allele in LD was among the S*-significant variants listed in the study 769 
mentioned above. We thus eliminated 92 deletions that were likely introgressed from archaic 770 
hominins into AMHs. 771 
 772 
 773 
 774 
Age of deletions and allele frequency trajectories 775 
We estimate the ages of the deletions in the deletion dataset using two methods: 1) Human 776 
Genome Dating database (https://human.genome.dating/download/index); and 2) RELATE 777 
(Speidel et al., 2019). 778 
 779 
The Human Genome Dating database (https://human.genome.dating/download/index) hosts 780 
age estimates for over 45 million single nucleotide variants (SNVs) (Albers and McVean, 2020). 781 
This database reports multiple age estimates for each SNV. We used the median age estimate 782 
calculated using the joint clock. Since this database only includes age estimates for SNVs (and 783 
not for deletions), we could only date a deletion if the dating database contained the age 784 
estimate for at least one of the variants in LD (r2 > 0.9) with the deletion. If age estimates were 785 
available for only one variant in LD, the same age estimate was assigned to the deletion. If age 786 
estimates were available for more than one variant in LD with the deletion, we used the highest 787 
age estimate, which may be inaccurate in certain cases. 788 
 789 
Relate is a method that estimates genome-wide genealogies and can be used to infer the age of 790 
a variant (Speidel et al., 2019). We used Relate to infer the ages of the deletions in the deletion 791 
dataset. To this end, we used previously inferred genome-wide genealogies for samples of the 792 
SGDP dataset (Mallick et al., 2016; Speidel et al., 2021), available from 793 
https://www.dropbox.com/sh/2gjyxe3kqzh932o/AAAQcipCHnySgEB873t9EQjNa?dl=0. For each 794 
deletion, we used SNVs in LD where the derived allele was tagging the deletion at an r2 795 
exceeding 0.9 and calculated the mean age of such SNVs to date each deletion. 796 
 797 
To quantify allele frequency variation, we computed the ratio of lineages carrying the derived 798 
allele by the total number of lineages remaining at 5,000 years and 50,000 years before 799 
present, but only if the number of lineages remaining at 50,000 years exceeded 10% of the 800 
present-day sample size. We then standardized the allele frequency change stratified by 801 
present-day allele frequency, by calculating the mean and standard deviation given present-day 802 
frequency. Finally, we squared this standardized allele frequency change to obtain our statistic 803 
�2, which is expected to have a Chi-squared distribution with one degree of freedom under 804 
neutrality, and smaller values for more stable trajectories. This approach was inspired by (Edge 805 
and Coop, 2019), who used a similar approach to quantify polygenic positive selection using 806 
genealogies. 807 
 808 
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Beta measure 809 
We used a recent and robust measure of balancing selection (Siewert and Voight, 2017), std�2, 810 
to investigate whether ancient deletion are enriched for targets of balancing selection. A high 811 
std�2 for a variant is indicative of balancing selection.  812 
 813 
In our study, we estimated std�2 for the deletions in the deletion dataset using SNVs in LD with 814 
them. We did this for the CEU, CHB, and YRI population separately. The std�2 scores for 815 
SNVs are publicly available (https://github.com/ksiewert/BetaScan) for the CEU, CHB, and YRI 816 
populations. For each deletion in each of these populations, we obtained the std�2 values for 817 
variants in LD with deletions whenever they were available. For a given deletion, when the 818 
std�2 values were available for more than one variant in LD with the deletion, we used two 819 
approaches to estimate the std�2 for the deletions. In the first approach, we used the highest 820 
std�2 among the LD variants as the estimate for the std�2 for the deletion. We call this 821 
BETAMAX. In the second approach, we focused on the std�2 values for the SNVs that were in 822 
LD with the deletion with the highest r2 value. If multiple SNVs were in LD with the deletion with 823 
the highest r2 value, we used the std�2 value of the SNV that was closest to the deletion among 824 
these SNVs as the estimate for std�2 for the deletion. We call this BETAPRIME. We performed 825 
this process for YRI, CEU, and CHB populations separately to arrive at std�2 estimates for 826 
deletions in our deletion dataset in each of these three populations. Using both BETAMAX and 827 
BETAPRIME gave us similar trends across populations. These values are available in 828 
Supplementary File 2. 829 
 830 
 831 
Ascribing phenotypic relevance to deletion 832 
We used two criteria to ascribe phenotypic relevance to deletions: 1) intersection of the deletion 833 
with at least one exon; and 2) association of a SNV in LD with the deletion with a GWAS trait. 834 
 835 
In order to identify deletions that intersect with exons, we started with the genome annotation 836 
file download from https://hgdownload-837 
test.gi.ucsc.edu/goldenPath/hg19/bigZips/genes/hg19.refGene.gtf.gz. Using an AWK script, this 838 
GTF file was then converted to a BED file containing five columns: 1) annotation’s chromosome 839 
number; 2) annotation’s start position; 3) annotation’s end position; 4) gene name; and 5) type 840 
of feature. Only the rows wherein the type of feature was “exon” and the chromosome number 841 
was between 1 and 22 were retained. All repeated entries (rows) were eliminated. The resulting 842 
file contained only columns 1) to column 4). We then used a BED file containing information 843 
about the AMH deletions in our deletion dataset and the BED file mentioned above to identify 844 
deletions spanning exons. This was done using the intersectBed option with -wa and -wb flags 845 
in the BEDtools module. On the resulting file, we used the groupby tool with the “-o freqdesc” 846 
flag in the BEDtools module in order to obtain a file containing the names of the genes (and the 847 
number of exons within each intersecting gene) that overlap the deletions. 243 (5%) of the 848 
4,863 deletions in the deletion dataset were exonic. 849 
 850 
The second method to ascribe phenotypic relevance to deletions was to use results from 851 
previously published Genome Wide Association Studies (GWAS). We used a publicly available 852 
catalog of GWAS results based on the UK BioBank data (http://www.nealelab.is/uk-biobank/). In 853 
particular, we used data for 4,113 traits. For each trait, we used data that produced results using 854 
both sexes. For continuous traits, we used the raw version of the data, as opposed to the 855 
inverse rank normalized version. For each trait, only those SNVs were retained that were 856 
associated with the phenotype with a p-value less than 10-8. We are making available a 857 
consolidated table with all statistically significant associations from this dataset 858 
(https://figshare.com/articles/dataset/Table_S3_for_Aqil_et_al_2022/19606192). We hope this 859 
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will make it easier for the scientific community to use GWAS results than the currently available 860 
datasets which store associations with each trait in a different table. Then, for each of the 4,863 861 
deletions in our deletion dataset, we checked if any of the SNVs in LD were among the SNVs 862 
that were significantly (p < 10-8) associated with a phenotype. We then obtained the phenotype 863 
that was associated with one of the SNVs in LD with the lowest p-value, and ascribed it to the 864 
deletion. Thus, 433 (8.9%) of the 4,863 deletions in the deletion dataset had phenotypic 865 
associations. 866 
 867 
Enrichment analysis for ancient deletions 868 
We performed enrichment analyses for phenotypic relevance and length among ancient 869 
deletions using variants with a pooled frequency > 5% in YRI, CEU, and CHB combined. First, 870 
we investigate whether a higher proportion of ancient deletions, relative to non-ancient 871 
deletions, have phenotypic relevance. To this end, we defined phenotypic relevance in three 872 
ways: 1) GWAS association, 2) exonic overlap, and 3) both GWAS association and exonic 873 
overlap. For each definition, we first calculated the observed proportions of phenotypic deletions 874 
among both ancient and non-ancient categories in turn. Then we shuffled the “ancient” and 875 
“non-ancient” labels among the deletions in 10,000 permutations, calculating the proportion of 876 
phenotypic deletions among both ancient and non-ancient labels for each permutation. Using 877 
the number of permutations in which the difference in proportions of phenotypic deletions was 878 
more extreme than the difference in observed proportions, we obtained an empirical p-value for 879 
phenotypic enrichment among ancient deletions. 880 
 881 
We also investigated whether certain phenotypic categories are overrepresented in ancient 882 
deletions relative to non-ancient deletions. For this, we used the UKBioBank traits associated 883 
with the deletions. In total, 1,675 traits were associated with the deletions in the deletion 884 
dataset. We manually placed each of these traits into one of 18 categories such that any 885 
deletion could be associated with one or more phenotypic categories (Supplementary File 3). 886 
Only deletions with a pooled frequency > 5% in YRI, CEU, and CHB combined were retained for 887 
analysis. For each phenotypic category, we obtained the proportion of deletions associated with 888 
that category among ancient and non-ancient deletions. We then shuffled the “ancient” and 889 
“non-ancient” labels in 10,000 permutations. Just as above, we used the number of 890 
permutations in which the difference in proportions of deletions associated with a phenotypic 891 
category was more extreme than the difference in observed proportions, and we obtained an 892 
empirical p-value. 893 
 894 
Now, we turn to length enrichment. We calculated the 2nd, 5th, 10th, 20th, 30th, 40th, 50th, 895 
60th, 70th, 80th, 90th, 95th, and 98th length percentiles for deletions in ancient and non-ancient 896 
categories. We calculated the differences in corresponding percentiles in ancient and non-897 
ancient deletions. Again, we shuffled the “ancient” and “non-ancient” labels into 10,000 random 898 
permutations, calculating the differences in corresponding percentiles in ancient versus non-899 
ancient deletions for each permutation. This gave us empirical p-values for differences in the 900 
length of ancient and non-ancient deletions at various percentiles.  901 
 902 
 903 
 904 
 905 
 906 
 907 
 908 
Simulations to identify signatures of overdominance 909 



 

24 

We set out to identify signatures associated with a locus that has evolved under 910 
overdominance. 911 
Methodologically, we approached the problem of separating overdominance from neutrality on 912 
two fronts: (i) The trajectory of the allele-frequency of the mutation conditioning on the age of 913 
the mutation, and (ii) the patterns of neutral polymorphisms around the so-called focal mutation 914 
which has evolved either under overdominance or neutrally (with the same age of the mutation). 915 
Given that a mutation under overdominance (heterozygote advantage) may be at intermediate 916 
frequency, we also (iii) studied simple coalescent simulations conditioning on the existence of at 917 
least one SNV within a certain frequency range (e.g. 50%-60%). The age of a mutation is crucial 918 
for the study of balancing selection. We considered two values for the age of a mutation: (i) 919 
10,000 generation and (ii) 40,000 generations old. In the first case, the age of the mutation 920 
corresponds to 10,000 x 29 years = 290,000 years old mutation. In the second case, the 921 
mutation is 1,160,000 years old. Conditioning on the age of the mutation, we generated allele 922 
frequency trajectories of the mutation, i.e., the frequency of the mutation at each time point from 923 
its onset until the present-day. For the overdominance scenario, we used the software 924 
trajdemognpops, implemented using tools from ms and mssel (kindly provided by R.R. Hudson), 925 
to generate trajectories of a mutation under overdominance. The dominance coefficient is 926 
characterized by a large value (here, h = 10) in order to assign a benefit for the heterozygote. 927 
Thus, the fitness for genotypes at a biallelic locus is by: 928 
 929 
Aa: (1.+sh), where s is the selection coefficient and h the dominance coefficient. Here, s = 930 
0.005 and h = 10, i.e., the heterozygote Aa has a fitness value 1.05. If we had considered 931 
codominance (as opposed to overdominance), we would have set h = 0.5. 932 
AA: 1 + s, thus, the fitness for the AA is 1.005 933 
aa: 1. 934 
 935 
Given the trajectory of a mutation, a population is split in two kinds of genotypes. The 936 
haplotypes carrying the mutation (or the derived allele) and the haplotypes that carry the 937 
ancestral allele. Each neutral (i.e. passenger mutation) can change “population” (genetic 938 
background) by recombination. Therefore, the coalescent in this case is described as a 939 
structured coalescent of two populations (a population with the derived allele and another 940 
population with the ancestral allele) that communicate between themselves via recombination. 941 
The size of each population is determined at each time point by the trajectory of the derived 942 
allele.  943 
In order to understand the effect of the age of the allele (and also to test the mssel code for 944 
correctness), we performed coalescent simulations (using Hudson’s ms) conditioning on the 945 
presence of at least one SNV at frequency within a given range. Since we are interested in the 946 
mutations that are approximately at 50% frequency in the population, we conditioned on the 947 
presence of derived mutations in the sample in 22-28 (out of 50) haplotypes. This set of 948 
simulations are called pseCoal. For each simulated dataset, we calculated the relevant 949 
population genetics statistics available through Comus (Papadantonakis et al., 2016) including 950 
number of segregating sites, θ, �, Tajima’s D, ZnS, Fay and Wu’s H, dvk, and dvh. Then, we 951 
conducted a summary of all these statistics using PCA. The goal is to understand whether the 952 
different scenarios can get separated by using polymorphic patterns. 953 
 954 
 955 
 956 
Conceptual and methodological concerns: 957 
 958 
Human polymorphisms wherein derived allele is shared with archaic hominins are older than 959 
700,000 years 960 
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AMHs and archaic hominins are estimated to have diverged around ~700,000 years ago. 961 
Therefore, if a human polymorphism has been maintained for more than ~700,000 years, it was 962 
also present in the common ancestral population of AMH and archaic lineages. It follows that if 963 
a polymorphism (the presence of both ancestral and derived alleles in a population) is present in 964 
AMHs and archaic hominins, then (barring recurrence and introgression), by parsimony, the 965 
polymorphism was also present in their common ancestral population (Figure 1A). Thus, a 966 
polymorphism that is shared by common descent between AMHs and archaic hominins, has 967 
been maintained for over ~700,000 years.  Moreover, because the ancestral allele is fixed in 968 
chimpanzees by definition, AMH polymorphisms wherein the derived allele is fixed in archaic 969 
hominins were also present (in the polymorphic state) in the common ancestral population of 970 
archaic hominins and AMHs. In essence, AMH polymorphisms for which archaic hominins carry 971 
the derived allele (fixed or polymorphic) have been maintained for more than 700,000 years. 972 
 973 
 974 
Why use SNVs (as opposed to deletion polymorphisms) for comparison of the real-life 975 
proportion of ancient polymorphisms against neutrally simulated SNVs. 976 
It is worth explaining why we used SNVs, instead of deletions –  the class of variants that we 977 
are interested in – for comparing observed versus simulated (under neutral conditions) 978 
proportions of ancient polymorphisms. Deletions are not suitable for such a comparison 979 
because, in general, they are targets of strong negative selection (Conrad et al., 2006; 980 
Kondrashov, 2017; Lin et al., 2015; Lin and Gokcumen, 2019). Thus, negative selection would 981 
have purged a large proportion of deletions that emerged in the common ancestral population of 982 
AMHs and archaic hominins. It follows that a smaller proportion of AMH polymorphic deletions 983 
than expected under neutral conditions will be shared by common descent with archaic 984 
hominins. Even if balancing selection were inflating the proportion of deletions that are shared 985 
with archaic hominins, it would not be observable due to the opposite deflationary effect of 986 
negative selection. Since negative selection is not as strong a force in the evolution of SNVs as 987 
it is for deletions, this problem would not be as pronounced if we used SNVs instead of 988 
deletions for testing this premise. Hence, our choice of SNVs for this analysis. In the main text,, 989 
we have expanded on the idea that deletions are targets of stronger negative selection. 990 
 991 
The vast majority of human deletions are derived relative to chimpanzees 992 
In order to identify deletion polymorphisms that have been maintained in the human lineage for 993 
over 700,000 years, we focused on deletions that were present (either polymorphically or fixed) 994 
in the four high coverage archaic genomes. This technique would work only for deletions that 995 
were derived in humans, relative to chimps. However, variants that have been called as 996 
deletions (wherein deletion is the alternative allele) in the 1000 Genomes project may, in fact, 997 
be human-specific insertions, such that the reference allele (non-deletion) is derived. To 998 
investigate how common this situation is among the 4,863 deletions in our dataset, we lifted 999 
over the the coordinates of the deletions from hg19 on to the Chimpanzee reference panTro3 1000 
using the LiftOver tool in UCSC Genome Browser (Kent et al., 2002). If the liftover for a deletion 1001 
fails on account of the window being completely or partially deleted in the Chimpanzee 1002 
reference, it is indicative of the region being a human-specific insertion. The liftover failed for 1003 
this reason for only 184 (3.8%) of the 4,863 deletions. Therefore, the vast majority of deletions 1004 
are, in fact, derived relative to chimps. 1005 
 1006 
 1007 
 1008 
 1009 
 1010 
 1011 
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SUPPLEMENTARY FIGURES 1013 

 1014 
Figure 1—figure supplement 1. Proportion of ancient polymorphisms in observed data (YRI), relative to 1015 
neutral expecation (“base” model parameters) in various derived allele frequency bins. The vertical blue line 1016 
indicates the observed sharing, while the distributions are simulated expectations. The excess of ancient 1017 
polymorphisms in observed data becomes more pronounced at higher derived allele frequencies. 1018 
 1019 
  1020 
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 1021 
Figure 1—figure supplement 2. A) Results from simulations invoking structure in the population that was ancestral 1022 
to both AMHs and archaic hominins. In this model, we have three latent subgroups in the ancestral populations. The 1023 
x-axis refers to the fraction of each subgroup that is formed by the migrants of each of the other subgroups in each 1024 
generation. B. Proportion of ancient polymorphisms in YRI. The purple line is the observed proportion of ancient 1025 
polymorphisms in Yoruba (YRI). The green and orange density plots indicate the distribution of the proportion of 1026 
ancient polymorphisms in neutral simulations with and without ancestral structure, respectively. We used Gravel et al. 1027 
parameters for these simulations. C. Comparison of the allele-frequency spectra of simulated SNVs with observed 1028 
SNVs. The purple, orange, and green lines represent allele frequency spectra in the YRI population using actual 1029 
SNVs, neutral simulations without ancestral structure, and neutral simulations invoking ancestral structure, 1030 
respectively.   1031 
  1032 
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 1033 
Figure 2—figure supplement 1. Read-depth-based pipeline to identify deletions in archaic hominin genomes: 1034 
Distribution of the modified Z-score of the read-depth across the 32,154 biallelic AMH deletions in the archaic 1035 
genomes. A. Altai neanderthal. B. Vindija neanderthal. C. Chagyrskaya neanderthal. D. Denisovan. 1036 
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 1037 
Figure 3—figure supplement 1. GEVA ages of deletions across categories. Absent denotes polymorphic 1038 
deletions in AMHs that are not present in any of the four high coverage archaic genomes. Introgressed refers to the 1039 
shared deletions that were introgressed from archaic hominins into AMHs. Recurrent refers to the shared deletions 1040 
that emerged independently in the AMH and archaic hominin lineages. Ancient refers to the AMH deletions that are 1041 
shared with archaic hominins by common descent. A. GEVA PRIME-ages. B. GEVA MAX-ages. With both GEVA 1042 
PRIME and GEVA MAX measures, we observe that ancient deletions are significantly older than absent, recurrent, 1043 
and introgressed deletions. This implies that our pipeline to identify ancient deletions is sound. 1044 
  1045 
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 1046 
 1047 
Figure 7—figure supplement 1. A. The probability of a polymorphism persisting in the population for 1,000,000 1048 
years under different negative selection pressures. B. Density plots of the first principle component of multiple 1049 
summary statistics based on variants simulated under neutral versus overdominance (s=0.05) scenarios. This is 1050 
shown for two categories of variants: 1) those that emerged 290 kya, and 2) those that emerged 1,160 kya. There is 1051 
no discernible difference between overdominance and neutrality within the time frame of these simulations. C. The 1052 
allele frequency trajectories of variants over 1,000,000 years, under neutrally (top), versus under overdominance 1053 
(bottom). The x-axis represents the time since the emergence of a variant in years, assuming a 29 year generation 1054 
time. The right panel is a zoomed-in version of the same allele frequency trajectories in the last ~50 thousand years. 1055 
 1056 
 1057 
  1058 
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